
2015 December  •  Vol. 6  •  No. 4   acm Inroads   71

CONTRIBUTED ARTICLES

The Beauty
and Joy of
Computing

• Dan Garcia • Brian Harvey • Tiffany Barnes •

We last presented our
Beauty and Joy of

Computing (BJC) course in a
special issue of ACM Inroads
in June 2012 [13]. At the time,
we taught BJC in two of the first
five CS Principles national pilots
at UC Berkeley and University
of North Carolina, Charlotte.
Many things have changed since those early days, with more
than two hundred high school teachers offered BJC professional
development (PD) through four NSF grants, a transition to our
blocks-based online software platform Snap! (based on Scratch)
with cloud support [18], and a partnership with professional
high school curriculum developers at EDC (Education
Development Center), who are working with us to further refine
our curriculum. Through partnerships with EDC, the New York
City Department of Education, and CSNYC, our NSF-funded
BJC4NYC project will bring BJC to 100 high school teachers in
New York City, the largest and one of the most diverse school
districts in the country. Finally, after two years of preparation,
we launched our Massive Open Online Course (MOOC) BJCx
via edX on Labor Day 2015 [4]. We are simultaneously offering
it as an edX Small Private Online Course (SPOC), allowing
high school teachers to use it as an e-book, complete with auto-
grading and a class dashboard. More than sixteen thousand
learners from all over the world signed up!

In this article, we share our philosophy, an update
on our course design principles, a general flow through
our curriculum, the impact BJC has had, and conclude
with lessons learned.

PHILOSOPHY
Beauty and Joy of Computing (BJC) is a CS Principles
course whose guiding philosophy is to meet students
where they are, but not to leave them there. It cov-
ers the big ideas and computational thinking practices
required in the AP CSP curriculum framework and
powerful computer science ideas like recursion and
higher-order functions. The programming part of
the course uses Snap!, an easy-to-learn blocks-based
programming language based on Scratch. Through
the course, students learn to create beautiful images,
and realize that code itself can be beautiful. Having
fun is an explicit course goal. We take a “lab-centric”
approach, and much of the learning occurs through
guided programming labs that ask students to explore
and play. When approaching a new topic, we use
the maxim of “experience before formality”—we ask
them to tinker around with a new idea (perhaps by
exploring a new set of blocks in Snap!) before formally
explaining how everything works. Formative assess-
ments inform instruction through daily For You To Do
activities in the lab that are shown to partners, groups,
and the instructor. Take It Further activities in the labs
(sometimes open-ended) and the opportunity for stu-
dents to work at their own pace through the labs pro-
vide differentiated learning. We suggest that students
use pair programming throughout the semester, with

The Beauty and Joy of Computing

72   acm Inroads   2015 December  •  Vol. 6  •  No. 4

CONTRIBUTED ARTICLES

partners that rotate regularly. We also encourage students to ask
for, and give, help to one another—a powerful tool for bringing
them together and developing a learning community.

We begin every day with a brief discussion of Computing in
the News, connecting computing to students’ everyday lives. When
discussing the AP CS Principles Global Impact Big Idea, we try to
balance optimism about technology with a critical stance toward
any particular technology. For each new technology or innovation,
we challenge students to think of its potential positive and negative
impacts, its relationship to data, and how abstraction/algorithms/
programming/ the internet are used. We also ask students to con-
sider what biases or hidden agendas might have motivated an in-
novation. While the main textbook in the course is the outstand-
ing book Blown to Bits [1], we supplement it with interesting web
articles and videos.

BJC highlights creativity, collaboration, and communication
through end-of-project celebrations, where students present their
projects to the class, and then play-test each other’s projects. Un-
like competitions, this egalitarian model allows everyone to feel
they have something unique to contribute to the group. Giving
students the opportunity to demonstrate their projects in front of
the whole school builds confidence and at the same time serves as
an outstanding strategy for recruiting students the following year.

Course Design (Update)
We continue to refine our course every semester, driven by univer-
sity and high school student and teacher feedback. We have the
same course design principles we outlined in [13], with the follow-
ing significant updates, in no particular order:

■ �Instead of the venerable Build Your Own Blocks (BYOB,
based on Scratch), we now use Snap! as our programming
environment (see Figure 1). Snap! is a full rewrite of
BYOB in JavaScript by Jens Mönig, and the move to a
browser-based programming environment has brought
many benefits:

 �The most obvious advantage of a browser-based
development environment is that there is no download;
one only needs to open a browser and go to the Snap!
URL to get rolling. This helps teachers who do not
have admin access to their Windows-based computers.
(Another related challenge is that many schools block
YouTube, so teachers must download video resources at
home and bring them in.) However, programming in the
browser introduces other challenges: not all browsers are
equally compliant with the latest updates of JavaScript,
not all computers have the latest versions of a particular
browser, and some schools have bandwidth and/or
connection issues. Fortunately, once Snap! is loaded
successfully, (unless the user explicitly uses the http block
or wants to store their projects online) it does not need an
internet connection to run and can load/save files locally.

 �Users can now use the MIOsoft-hosted cloud [18] to
store their projects. This means students can work at
school, save their project to the cloud, and pick it up
later (home, at the library, a friend’s house, etc.) without
having to worry about copying it to (and not losing!) their
USB flash drive.

 �Once saved to the cloud, projects can be “shared” with
others via an unencrypted URL that points to the project,
and indicates the author and project name. Similar to
a read-only link to a Google Doc, once another user
opens the URL, a copy of the project is loaded into their
browser—any changes do not affect the original. This
feature is very useful for partners working on projects
together (say, as part of the AP CS Principles Create
performance task), since they can exchange projects
as easily as they can send each other a link. It’s also an
invaluable feature for teachers who might be coding live
in front of the class and wish to have the entire class
catch up to where they are. The teacher would simply
save the project to the cloud, click the “Share” button in
the open or save dialog box (see Figure 2), and copy the
resulting URL to a URL shortener, like TinyURL, bitly

Figure 1: The browser-based Snap! programming environment, a rewrite of
BYOB (Build Your Own Blocks, based on Scratch) in JavaScript.

Figure 2: Choosing “Double Jurassic Park” in the Snap! “Open Project”
dialog box. All shared projects appear in bold font, and users can easily make
a project private again by choosing it and clicking the “Unshare” button.

2015 December  •  Vol. 6  •  No. 4   acm Inroads   73

CONTRIBUTED ARTICLES

or ShoutKey. We particularly like latter for spontaneously
generated URLs because its shortened URLs (though
temporary) are just a single English word appended to the
end of “shoutkey.com/”, like “shoutkey.com/rice”—
so the teacher need only say “Shoutkey rice” and all
students know where to go [20]. Another possibility is a
Google Chrome extension called “Tone” that introduces a
small speaker icon near the URL field that generates
R2D2-like sounds out of your speakers for a few seconds
when it is clicked, and all computers within “earshot” (with
the extension installed in Chrome) are sent the link [14].

 �The combination of the in-the-browser development
environment, easily shared cloud-hosted projects, and
the fact that all shared projects (by default) start in “play”
mode (full-screen, “green flag”) clicked—a common way
for projects to start—means that we have a recipe for
easy mobile apps. Users just go their mobile device, open
their mobile browser, and go to the Snap! project URL
(hopefully shortened). Both iOS and Android allow
users to save a URL into a virtual link with a square “app
icon,” so these web-hosted projects look like native apps.
We were able to recreate the Snap! version of the App
Inventor tutorial “Whack a Mole” in 90 seconds! (It takes
60 seconds to build the code, seen in Figure 3, and 30
seconds to share it and load it onto a mobile device.)

 �Snap! is written in JavaScript, and recently added a
“JavaScript Function” block that lets (advanced) users write
raw JavaScript but hide the details by wrapping it up and
presenting it as a regular Snap! block. This is the beauty of
abstraction! For example, Figure 4 shows how to add the
ability to speak text with a one-line call to JavaScript.

 �Snap! has an http block that allows the easy access to
Internet APIs. Unfortunately, these APIs often speak in a
cryptic JSON (JavaScript Object Notation) text-based
format that can be difficult to parse. However, we provide

 a block that can transform that JSON to a key-
value pair dictionary / association-list (really just a Snap!
list of lists), which can be queried. Figures 5 and 6 show
how we call the “genderize” API that can tell (with data-
driven probability) whether a particular name is probably
a male or female name.

 �Snap! has four new key usability features that can be
significant for some users. Users can resize the size of
blocks and the stage, can find blocks using a keyboard
command, and can input blocks via the keyboard (see
Figure 7). When typing in the names of blocks, Snap!
uses “context-based live search,” so as you type, the
blocks (that make sense in that context) matching the
letters you’ve entered so far instantly show up. Mouse-
free coding is one small step toward supporting visually
disabled users with our curriculum and software.

Figure 5: The definition of the command block shows how
easy it is to call an internet API, process the results, and use it in a project.
If the user types “Dan” as a response to the “What’s your name?” prompt,
the system responds: “I’d say Dan is a probably a male with probability
0.98.” is a fairly complicated block written in JavaScript that
transforms the plaintext JSON (JavaScript Object Notation) result from the
API call to a key-value dictionary (aka association list, represented by a
Snap! list of lists) that knows how to traverse.

Figure 6: This demonstrates
how you might call the

 command
block. All the details of the
API call are hidden from
the user.

Figure 4: A speak command block can be added to Snap! by using the
JavaScript function block.

Figure 3: The Snap! code for the “Whack Alonzo” mobile app, which can be
written in 60 seconds, and loaded on a mobile device in only 30 more seconds.

Figure 7: This common “draw a block” code was
generated using the new keyboard entry feature in
Snap! The user typed: pe ↓ ↵ re ↓ ↵ ← ← ↵ 4 ↵ →

mo ↵ ← ↵ → 0 ↵ ↓ tu ↓ ↵ ← ↵ 90 ↵.
All along the way, there was a blinking

“block cursor” that indicated where
the next block would be placed or
what field was about to be edited.

The Beauty and Joy of Computing

74   acm Inroads   2015 December  •  Vol. 6  •  No. 4

CONTRIBUTED ARTICLES

 �Finally, in preparation for our edX MOOC, we added
“auto feedback” to Snap! that allows a user to check
whether their code for a particular coding challenge has
the correct components (blocks, values, order), input/
output properties (for reporter blocks), and/or side-effects
(for drawing and interactive commands), and can provide
helpful hints. Currently, this only exists in the edX course
BJCx, but we hope to pull it out and integrate it with
EDC’s curriculum next year.

■ �We removed Scratch from our first-weeks curriculum, and
added Python “Beyond Blocks” lectures and labs at the end
to help our local students’ impedance match with our first
course for majors (taught in Python). These are not part
of our EDC eight-unit high school curriculum, but are
available as optional units. Instead, we begin with a Snap!
“Hour of Code” activity that takes students through making
the “Whack Alonzo” mobile app by the end of the first day.

■ �We have included a few Hour of Code introductory videos
in the labs.

■ �We integrated the use of Higher-Order Functions (HOFs)
into early labs (Unit 3) when students are learning about
algorithms and lists. These include the functions map, keep,
and combine—that students learn how to build at the end of
the course in Unit 8.

■ �We promote the use of pair programming all year, instead of
just for the projects.

■ �We moved the “Computing in Industry” and “Distributed
Computing” material into the “optional units” category to
allow more time for lecture, lab, discussion and unplugged
activities to address the Abstraction, Creativity, Internet, and
Data big ideas.

■ �Overall, labs have been redesigned to have more “experience
before formality” and differential learning.

CURRICULUM OVERVIEW
At a very high level, the first quarter of the course (two units) takes
students through the Abstraction and Creativity big ideas, gets
them started with programming in Snap!, and ends with a fun pro-
gramming project of the students’ choice completed in teams. This
is so they get practice with collaboration, and feel a sense of accom-
plishment after the first quarter with a completed project they can
share with their friends and family. The second quarter (two units)
takes them through the algorithms and programming big ideas (in
Snap! they are learning about how to store data in lists), as well
as most of the remaining Global Impact big ideas. At the close of
this quarter, they are ready for their Explore Performance Task, since
they have been discussing computing innovations on a daily basis
through our Computing in the News bell-ringer activities. The third
quarter (two units) allows them to complete all remaining big ideas
(Data and Internet). At the close of this unit, students have finished
all required elements in the Curriculum Framework, complete the
Create Performance Task, and prepare and take the AP CS Principles

Exam. The final quarter is wonderful “BJC secret sauce” material
that students learn after the AP exam. Students will explore their
creativity learning about fractals and recursive and higher-order
functions. They will also hear outstanding lectures on computing
research, including Artificial Intelligence and Human-Computer
Interfaces. EDC will continue to host the most recent copies of the
labs as they refine them over the next several years [10].

■ �Meta: Computing in the News (daily)
 �On a daily basis, in advance of class teachers pull
computing news from ACM TechNews [2], the NY
Times Technology section [19], the Electronic Frontier
Foundation [11], and the Electronic Privacy Information
Center [12]. These serve as launching points for bell-
ringer discussions about computing innovations, how
they interact with data and the CSP big ideas, and their
social implications. Sometimes students lead whole-class
conversations; other times teachers promote small-group
discussions. The teacher improvises to allow for a topic
that is engaging the entire class to continue. Big Ideas:
Data and Global Impact

■ �Unit 1: Introduction to Computational Thinking
 �We engage the students immediately by showing some of
the best final projects done by students the year before.
We start with an introduction to computing with Snap!
by building a mobile app with a partner. We designed
the course so that students do all work in rotating pairs
throughout the year. After that, students dive right into
using Snap! by exploring its features and creating visual
projects using important programming ideas such as
loops, randomness, and building blocks. As much as
possible, students experiment with Snap!, playing with
input parameters, using blocks before they have been
formally introduced, and modifying and extending the
assigned tasks. Creativity and Abstraction are not only
AP CS Principles Big Ideas, but also essential to students'
experience of the course, and we summarize them
through discussions with the students. Students will also
discuss social implications of computing, including issues
such as cyber bullying, the prevalence of social media,
and the ethics of illegally downloading music. Students
are likely to be familiar with these issues, and grappling
with them at the beginning of the course helps students
understand the relevance and necessity of understanding
the world of computing. Big Ideas: Abstraction,
Creativity, Programming, and Global Impact

■ �Unit 2: Developing Complex Programs
 �Although the unit continues to introduce new
programming concepts and Snap! features, the major
programming focus is on structure and abstraction.
Starting with the challenging task of teaching the
computer to generate the plurals of nouns (e.g., butterfly
→ butterflies, moth → moths, bush → bushes), students
begin thinking about the structure of programs and even,
in a very preliminary way, the structure of data. They

2015 December  •  Vol. 6  •  No. 4   acm Inroads   75

CONTRIBUTED ARTICLES

learn about conditional statements, and think about
when to use a sequence of conditionals, when to combine
the conditions (Boolean values) first and have fewer
conditional statements, and when to create “specialist”
blocks, relegating lower level details to sub-procedures
so that the main top-level block shows the structure of
the logic un-camouflaged by the details. This structure
allows the specialist blocks to be refined without requiring
revision to the overall program. All of these are at the
heart of Abstraction and are core to mathematical
thinking as well as computer science. Students also begin
to think about what makes correctly-working code “good”
code—is it the brevity, the clarity, or some combination?
(They do not yet encounter situations in which the speed-
efficiency of the code can be a criterion.) This, too, helps
them begin to attend to structure. Moreover, they begin
to think about debugging by deliberately looking for ways
to make a program fail, and then finding ways to avert
failures. We also have engaging CS Unplugged activities
that teach students how to convert numbers back and
forth from a decimal representation to binary and hex
representations. Big Ideas: Abstraction, Programming,
Algorithms, and Global Impact

■ �Fun Programming Project
 �This is a chance, over two weeks, to allow students to
work with a partner on a Snap! project of their choice. At
the close of this activity, students present their projects
to the class, and get a chance to play with each other’s
projects.

■ �Unit 3: Lists and Algorithms
 �At this point, students are comfortable with Snap! but

have found cases when they wanted to store aggregate
information but didn’t know how—such as high scores
for a game. We introduce lists (the only primitive data
structure element in Snap!), and explain that there are
two ways of thinking of them, as mutable or immutable.
The latter follows the functional programming paradigm
that underlies the course. We introduce some initial
algorithms for working with lists, and continue with
hierarchical lists (lists of lists used to draw points on the
screen). We explore our first taste of functions-as-data as
we experiment with map, keep and combine and use them
to write an acronym generator. We end the programming
activities with a program to detect magic squares. On
the social implications side, we continue reading Blown
to Bits [1], learning about and discussing the internet,
search, encryption, and security. Big Ideas: Abstraction,
Programming, Algorithms, and Global Impact

■ �Unit 4: Algorithmic Complexity
 �This is somewhat of a lighter-weight programming unit,
but has some important and powerful computer science
ideas. We continue with the discussion of algorithms
and complexity, starting with a number finding activity.
We look at timing activities to compare the difference

between constant, logarithmic, linear, quadratic, cubic
and exponential running times. We discuss what kinds of
problems are and are not computable, and show a failed
attempt at solving the Halting Problem. On the social
implications side, students read Blown to Bits chapters
6-8 [1] that discuss copyright, intellectual property,
censorship, regulation, computing in war, and computing
innovations. Big Ideas: Abstraction, Programming,
Algorithms, and Global Impact

■ �CSP Explore PT
 �Students complete the Explore PT in eight classroom
hours. The Explore PT has students channeling half a
year’s worth of Computing in the News discussions. At the
close of this activity, students share the research on their
innovation with the class.

■ �Unit 5: Data and Information
 �In a rare case of alignment, this unit matches up perfectly
with the CSP Big Idea of Data. As is usual for our take
on topics, we use a programming lens. Therefore, rather
than load data into Excel and massage it there, we pose
problems whose solution requires students to write Snap!
code to investigate. We start with text-based data: the
case of Spam vs. Ham text messages, and ask them to
consider writing a filter that could detect (and filter out)
Spam. We then look at numerically-based data and the
challenge of determining where a criminal is located who
is “leaking” identifying GPS data from their tweets. We
end with the first five of the ten teaching modules from
the UC Berkeley Teaching Privacy group: You’re Leaving
Footprints, There’s No Anonymity, Information is Valuable,
Someone Could Listen, and Sharing Releases Control [21].
Big Ideas: Data and Global Impact.

■ �Unit 6: The Internet
 �Again, there is close alignment between our curriculum
and a CSP Big Idea. This unit starts with the students
reading the outstanding Appendix of Blown to Bits
[1], and discussing it with the class. We have activities
that expose and reconcile student misconceptions about
how the internet works, supplemented by Code.org [6]
and other popular illustrative videos. For programming
activities, we have students explore internet APIs in
Snap! and build a mini-project around them, as in Figure
5. We have a scavenger hunt activity involving internet
tools traceroute, whois, telnet, ping and Speedtest.
We end with the remaining five teaching modules from
the UC Berkeley Teaching Privacy group: Search is
Improving, Online is Real, Identity Isn’t Guaranteed, You
Can’t Escape, and Privacy Requires Work. Big Ideas: The
Internet and Global Impact.

■ �CSP Create PT & AP CSP Exam
 �The Create PT takes 12 classroom hours, with students
in pairs for some of that time and alone for some of that
time. At the close of this activity, students demo their
projects to the class, and play with each other’s programs.

The Beauty and Joy of Computing

76   acm Inroads   2015 December  •  Vol. 6  •  No. 4

CONTRIBUTED ARTICLES

■ �Unit 7: Trees and other Fractals
 �Teaching experience shows us that students find recursive
commands easier to understand than recursive reporters
(functions that return values). Therefore, we split our
exploration of recursion into two units, starting with the
easier idea. Generating fractals is a vivid and engaging
application. We start with the usual fractal tree, using
the combining method of teaching recursion: Write a
procedure, TREE1, that draws just the trunk of a tree,
then write a procedure, TREE2, that draws simple
branches by calling TREE1 twice. This is not a recursion,
and since the students already wrote and debugged
TREE1, there is nothing magical about it. We continue
with TREE3, TREE4, and so on until the students
complain that all these procedures are the same. We take
them up on it by writing a recursive TREE with an extra
LEVEL input replacing the numbers in the procedure
names. (Since the first unit, students have seen many
examples of generalizing a pattern by adding an input
that captures the differences among similar examples.)
However, it doesn’t work, because there is no base case.
The students have forgotten that TREE1 is different
from the others. By correcting this, we reach a recursive
solution that feels doable.

 �The tree fractal provides plenty of opportunity to debug
students’ understanding by adding constraints: make the
branches brown and the leaves green; make the trunk
thicker; change the angles and lengths of branches ran-
domly. (It’s tricky to do that and still end up back at the
bottom of the one tree trunk!) We then present several
other fractals, with a lot of scaffolding in the early ones
and progressively less in later ones. We do not use tail-
recursive examples; we do not present recursion as a more
complicated way to do iteration. If we can write code to
do something iteratively, we should—or, even better, we
should solve it using higher order functions! It’s impor-
tant to avoid tail recursion so that students aren’t encour-
aged to develop the defective “go back” model of recur-
sion, where they believe the report (i.e., return) statement
means “jump back to the top of the block and start again.”

■ �Unit 8: Recursive and Higher-Order Functions
 �Recursive functions are both practically useful, especially

in these days of massive parallelism, and of importance
in theoretical computer science. They’re also beautiful,
once you understand them. What makes them harder for
students than recursive commands is that the recursive
call(s) aren’t separate instructions, but rather have to
be part of the (possibly quite complicated) compound
sub-expression returned by the function. We start by
addressing that difference explicitly, with simple examples
using different combiner functions. Then we jump
straight into branched recursion, to ensure that students
create the correct conceptualizations of recursive calls.
(Note that recursive functions are hardly ever truly tail

recursive, but if there is only one recursive call, it is easy
for students to miss that subtlety.) Pascal’s Triangle
is a great example because it’s a branched recursion if
you simply implement the usual definition in terms of
adding earlier numbers to get a later one, and yet there
are (much) more efficient ways to solve the problem. We
introduce the idea of memoization as a way to have our
(simple definition) cake and eat it (efficiently) too.

 �We reconnect with our earlier introduction to binary and
hex notation, again taking the opportunity for students
to write programs. Conversion between radices is a
linear recursion, not a branched one, but it’s too elegant
to miss. We extend the algorithm to other bases, and in
a Take It Further, we demonstrate the arbitrariness of
representation by teaching about biquinary. (This also
lets us sneak in a mention of the potential unreliability of
hardware.)

 �Progressively harder examples include mergesort
(in which the simple recursive definition helps time
efficiency, compared with simple iterative quadratic-time
algorithms) and finding the subsets of a set (giving more
practice with lists of lists). Then we return to simple
examples, writing several recursive functions over lists
that could more easily be done using MAP, then we do
our usual trick of generalizing patterns by adding an
input, and voilà, the students have written their first
higher order function. They then quickly write KEEP
and COMBINE. This is the climax and culmination of
the course.

IMPACT
By the end of the summer 2015, we had offered professional devel-
opment to 245 teachers, and worked with 20 master teachers who
returned for a second summer PD and were ready to lead sessions
on their own; four master teachers have already led sessions. We
have had rather large, week long, face-to-face workshops (see Fig-
ure 8), as well as smaller, more intimate ones. Our PD format has
evolved our model from 1-8-1 (one week face-to-face, eight weeks
online, one week face-to-face) to 1-4-1.

Figure 8: The teachers who attended the first week of the 2014 BJC PD at
UC Berkeley.

2015 December  •  Vol. 6  •  No. 4   acm Inroads   77

CONTRIBUTED ARTICLES

We have partnered with TEALS, a Microsoft initiative that
partners software engineers with high school teachers to offer AP
Computer Science A and “INTRO CS”—either a one-semester
or full-year version of our BJC course [22]. We have welcomed
TEALS teachers to our PD sessions, and have had dedicated one-
day PD for engineers. In the 2014-15 school year, TEALS had 131
partner schools and 162 classes in those schools. Of those 162, 51
were semester-long and 16 were full-year long INTRO CS cours-
es, both of which used the BJC curriculum.

In terms of directly connecting the course with students our-
selves, we are consulting with the Level Playing Field Institute to
offer BJC to their rising-junior SMASH scholars over the summer
and through their fall academic-year program [16]—one model
to reach students who do not have any computer science in their
high school [17]. We worked feverishly to finish preparations to
launch BJCx on Labor Day 2015 to 16K+ students, coming from
175 countries (the top three are US at ~32%, India at ~12%, and
UK at ~4%) with self-reported ages from 10 to 70 (see Figure 9).

Other universities, including UNC Charlotte, UNC Greens-
boro, Winona State, University of Oklahoma, NC State, and IU-
PUI, have taught BJC. At UC Berkeley, the BJC course has been
transformational, bringing in record numbers of underrepresented
students into the computer science major stream. We hit a cre-
scendo in 2013, when BJC became the first UC Berkeley introduc-
tory computing class in recorded history to have more women than
men in it [5]. Finally, we were humbled when both the College
Board and Code.org endorsed BJC as a CS Principles course [7,8],
and delighted to see components of our Creative-Commons BY-
NC-SA-4.0 curriculum show up in the curricula of others in the
CS10K family (e.g., Snap!, computing-in-the-news discussions,
etc.) and among educators internationally. At the recent Scratch
2015 conference, we saw related initiatives from Korea, Spain,
Germany, France and Austria [24]!

LESSONS LEARNED ABOUT OUR
PROFESSIONAL DEVELOPMENT
■ �In our 1-N-1 model, we had only been paying teachers for

their bookend face-to-face time. We believe teachers need
stipends for the online part too, so they treat it as their full time
job for the entire time. In a perfect world, we would sequester

the teachers away in an uninteresting locale with no nightlife,
to allow time for daily homework and projects after dinner.

■ �In the intro week, we would have the teachers sample the
curriculum as pair programming teams, model examples of
class activities (e.g., CS Unplugged, Computing in the News,
discussions, etc.), and have the teachers work in teams to
complete and present a micro-project (see Figure 10).

■ �Initially, university professors led the PD. Now, two high
school teachers, one senior and one junior, lead together.
That has been great for scalability, but participants have
said there are times when it’s nice to have one of the
university faculty leads in the room, to answer a tough
question or provide an explanation why things (e.g.,
curriculum, software) were designed the way they were.
Our leadership model is as follows (over consecutive
summers, hopefully teaching BJC every year after the first
summer): attend BJC PD as a regular teacher, attend a
“master teacher” workshop that brings together veteran
BJC teachers to share best practices, co-lead a BJC PD
alongside a senior master teacher, and finally lead a BJC
PD as the senior master teacher.

■ �As much as we have tried to coalesce them in one place,
we still have no answer to the expanding variety of
resources and websites necessary for summer PD: Snap! for
programming, Wiki or Google Drive for sharing materials,
Piazza BJC TEACHERS site for questions and answers,
video-conferencing (Skype, Google Hangout) for online
office hours, and the EDC site for the curriculum. If you
add to that the main BJC website [3], our Facebook and
Twitter pages, our CS10K community [9] area, and the edX
course pages, it sometimes feels like a cacophony.

LESSONS LEARNED
ABOUT OUR CURRICULUM

■ �The “How fast can N people return a shuffled deck to
its sorted order?” (with varying values of N) is easily the
most engaging CS Unplugged activity we have in the

Figure 9: A histogram of the self-reported ages of more than 16,000 students
enrolled in the first BJCx MOOClet, which launched Labor Day 2015.

Figure 10: NYC teachers enjoying a particularly amusing end-of-PD-week
presentation.

The Beauty and Joy of Computing

78   acm Inroads   2015 December  •  Vol. 6  •  No. 4

CONTRIBUTED ARTICLES

curriculum (see Figure 11). Given the constraint that the
unique sorted order needs to be announced in advance, the
students themselves come up with parallel algorithms. The
material requirements are minimal, and everyone is usually
fully participating. The teacher can increase the value of
N slowly, allow newly formed groups to determine their
strategies, time them with a stopwatch, clicking the “lap”
button whenever another group finishes, and plot the best
times on a big graph to motivate a discussion of Amdahl’s
Law. We normally use this later in the year to introduce
our concurrency material, but our New York City teachers
advocated that we should introduce it early (even on the
first day), since it could serve as an icebreaker and team-
building activity.

■ �Learning about higher-order functions is easier if students
first use them (and we now cover in Unit 3) and separately
write them (now in Unit 8).

■ �Some people found the name of the guess-a-word game
“Hangman” culturally insensitive, so we changed it to
“Wheel of Fortune.” We typically launch it as a three-part
problem: word guessing basics, full Wheel of Fortune, Evil
Wheel of Fortune, the last one based off of Keith Schwartz’
Nifty Assignment [23].

■ �Teachers want more directed instruction and resources
around building interactive projects (e.g., how to manage
multiple sprites, how to scroll the background, how to test
for sprite collisions). One way to work with multiple sprites
in Snap! is to think of one sprite as the “director” and the
others as “actors.” The director sends commands to the
other sprites via the “tell” block (available when you “Import
Tools”), as in Figure 12.

■ �A fertile area for us to grow is rule-based problems—with
multiple sprites interacting, and each sprite following a very
small set of rules. Like recursion, in which a few lines of
code can reveal complex results, these projects sometimes
yield quite surprising, emergent behavior. Some good
examples are the simulated N-body physics problems,
Conway’s Game of Life, and other continuous and discrete-
space cellular automata [25].

■ �There is untapped potential in the sharing of resources
and ideas with others leading CS10K efforts. Most of
us awarded NSF CE21 funds to offer CSP teacher PD
are wedded to our particular programming environment,
but there are a host of other activities we employ to teach
the non-programming aspects of CSP that we should be
sharing. We have already incorporated several of Code.
org’s videos, and are exploring the inclusion of some of their
online activities, like the data compression and networking
simulations.

■ �It is very time-consuming to transform a curriculum into
an online course; many have said the lift is comparable to
writing a book. Lots of “I”s to dot and “T”s to cross; it takes
a village of folks to help, especially if there is a fair bit of
development to be done (e.g., auto-grading). Leveraging
top undergraduates can be quite effective but sometimes a
mixed bag; they do amazing work, but they can also flake. It
helps to have a solid core of lead students who do work but
also manage other students. The most important two are
the technical lead and the program manager, and we been
fortunate to have terrific students in those roles.

CONCLUSION
Developing, teaching, and offering PD for BJC has been a six-year
labor of love for us. It has allowed us to work with many incredible
people—faculty and thought-leaders involved in CS10K, hundreds
of high school teachers, and thousands of students. Many of these
students have shared their poetry and artwork with us describing
what the course has meant to them and how it has changed their
lives (see Figure 13). We look forward to the coming years, which
will bring even more polishing of the curriculum by the EDC team,

Figure 11: It’s hard to beat the “N people sort a deck of cards” activity
for engagement, team-building, student-driven learning and motivation
for learning about algorithms, running time and concurrency. Here, NYC
teachers are attempting to set the 13-person world record—they sorted
them in 26 seconds!

Figure 12: The Director sprite in the upper-left of the stage “tells” the
Marissa sprite to say something. This “Director-Actors” pattern is extremely
useful when working with multiple sprites in a simulation or game.

2015 December  •  Vol. 6  •  No. 4   acm Inroads   79

CONTRIBUTED ARTICLES

one hundred more teachers in New York City offering the course,
and hopefully many more crowd-funded through Let’s Teach CS
[15]. All of that will allow us to continue to broaden participation,
and as part of the larger CS10K effort, bring impactful, rigorous,
and engaging introductory computer science to the world. Ir

Acknowledgements

NSF grants 1143566, 1138596, 1443699 and 1441075, and a development grant from edX
have supported this work. We owe a tremendous amount of thanks to the students and fellow
instructors who have helped develop, refine and teach this course.

References

	 [1]	� Abelson, Hal, Ken Ledeen, and Harry Lewis, Blown to Bits: Your Life, Liberty, and Happiness
After the Digital Explosion. Addison-Wesley Professional, 2008.

	 [2]	� ACM TechNews; http://acm.org/technews. Accessed 2015 September 16.
	 [3]	� BJC website; http://bjc.berkeley.edu. Accessed 2015 September 16.
	 [4]	� BJC on edX; https://www.edx.org/course?search_query=BJC. Accessed 2015 September 16.
	 [5]	� Brown, K. “Tech shift: More women in computer science classes.” sfgate.com. February

18, 2014; http://www.sfgate.com/education/article/Revamped-computer-science-classes-
attracting-more-5243026.php. Accessed 2015 September 16.

	 [6]	� Code.org website; http://code.org. Accessed 2015 September 16.
	 [7]	� Code.org. “Expanding computer science through partnerships.” Anybody Can Learn (blog),

June 3, 2015; http://blog.code.org/post/120601224166/3rdparty-partnerships. Accessed
2015 September 16.

	 [8]	� College Board. “College Board and NSF Expand Partnership to Bring Computer Science
Classes to High Schools Across the U.S.” June 4, 2015; https://www.collegeboard.org/
releases/2015/college-board-and-nsf-to-bring-computer-science-classes-to-high-schools.
Accessed 2015 September 16.

	 [9]	� CS10K community website; http://cs10kcommunity.org. Accessed 2015 September 16.
	[10]	� EDC. “Beauty and Joy of Computing, 2015-2016;” http://bjc.edc.org/. Accessed 2015

September 16.
	[11]	� Electronic Frontier Foundation; http://eff.org/. Accessed 2015 September 16.
	[12]	� EPIC – Electronic Privacy Information Center; http://epic.org/. Accessed 2015 September 16.
	[13]	� Garcia, D. D.; Harvey, B; and Segars, L. 2012. CS principles pilot at University of

California, Berkeley. ACM Inroads 3, 2 (June 2012), 58-60; DOI=http://dx.doi.
org/10.1145/2189835.2189853

	[14]	� Google Tone; http://googleresearch.blogspot.com/2015/05/tone-experimental-chrome-
extension-for.html. Accessed 2015 September 16.

	[15]	� Let’s Teach CS; https://www.facebook.com/LetsTeachCS. Accessed 2015 September 16.
	[16]	� Level Playing Field Institute. “LPFI and UC Berkeley’s “Beauty and Joy of Computing”

Collaborate to Bring CS Principles to SMASH Scholars.” (blog) September 1, 2015; http://
www.lpfi.org/cs-initiatives/cs-principles-course/. Accessed 2015 September 16.

	[17]	� Level Playing Field Institute. “Path Not Found: Disparities in Computer Science Course Access
in California High Schools.” May 7, 2015; http://www.lpfi.org/path-not-found-disparities-in-
computer-science-course-access-in-california-high-schools/. Accessed 2015 September 16.

	[18]	� Miosoft. “Snap! Programming for everyone.” (blog) February 25, 2015; https://blog.miosoft.
com/2015/02/snap-programming-for-everyone/. See also http://snap.berkeley.edu/. Accessed
2015 October 15.

	[19]	� New York Times: Technology; http://www.nytimes.com/pages/technology/. Accessed 2015
September 16.

	[20]	� Shoutkey; http://shoutkey.com. Accessed 2015 September 16.
	[21]	� Teaching Privacy Research Group. “Teacher’s Portal;” http://teachingprivacy.org/teachers-

portal/. Accessed 2015 September 16.
	[22]	� TEALS | Computer Science in Every High School; http://www.tealsk12.org/about/. Accessed

2015 September 16.
	[23]	� Schwarz, K. “Evil Hangman.” Nifty Assignments. March, 2011; http://nifty.stanford.edu/2011/

schwarz-evil-hangman/. Accessed 2015 September 16.
	[24]	� Scratch 2015 Program; http://www.scratch2015ams.org/wp-content/uploads/2015/01/

Scratch2015programma-web.pdf. Accessed 2015 September 16.
	[25]	� Wolfram, S. A New Kind of Science Champaign IL, Wolfram Media Inc., 2002.

DAN GARCIA
777 Soda Hall #1776
UC Berkeley, Berkeley, California 94720-1776 USA

ddgarcia@cs.berkley.edu

BRIAN HARVEY
784 Soda Hall #1776
UC Berkeley, Berkeley, California 94720-1776 USA

ddgarcia@cs.berkley.edu

TIFFANY BARNES
Engineering Building III (EB3) 2401, Box 8206
NCSU Campus, Raleigh, North Carolina 27695 USA

tmbarnes@ncsu.edu

DOI: 10.1145/2835184� © 2015 ACM 2153-2184/15/12 $15.00

Figure 13: Artwork created from a UC Berkeley BJC student
(who wished to go unnamed) to summarize what the course
meant to her.

